LRP Toolbox for Artificial Neural Networks 1.2.0 — Manual

Sebastian Lapuschkin Alexander Binder Grégoire Montavon
Klaus-Robert Miiller Wojciech Samek

November 17, 2016

Contents
I Overviewl

2 Setup and Execution|

B LRP Tor ArGfical N N K5 S Zod

[4 Implementation and Examples|

[Caffe specifics]

[6 Contact and Support|

17

19

1 Overview

This is the manual for the LRP Toolbox for Artificial Neural Networks, an open-source implementation of
the Layer-wise Relevance Propagation (LRP)[I] Algorithm for deep learning architectures. LRP is capable
of decomposing the decision function f(-) of a given neural network model wrt to an input point @ in order
to compute relevance values RS) at input level explaining why and how the model predicts the way it does.

The computed relevance values describe whether the state of input component x4 contributes towards
the recognition of the classifier’s prediction target if R&l) > 0 — or opposes it if R((il) < 0 — and can be
visualized as a heatmap for visual assessment. A detailed description of LRP can either in the original
publication [I] or further below in Section

The toolbox comes with platform-independent stand-alone implementations of LRP in Matlab and python
and a plugin for the Caffe [4] open-source ConvNet implementation. Models, Data and Results can be
imported and exported as Matlab’s .mat files, numpy’s .npy or .npz files for python or ASCII-formatted
plain text. For details about the supported formats for each implementation see Section [

Both the Matlab and python code are fully documented and for each example impelentations demonstrate
the application of LRP at hand of the MNIST hand written digit data set [6]. The LRP implementation for
Caffe extends the respective classes and files with the needed functionality and operates directly on images
and pre-trained model from the command line. The most recent official release of the source code and
example data and models are available from

http://heatmapping.org
with work-in-progress code and release candidates being obtainable via
https://github.com/sebastian-lapuschkin/lrp_toolbox

The following Section [2| will guide through the process of obtaining, setting up and running the LRP
Toolbox for all supported programming languages. Section [J] explains the LRP Algorithm in theory and
Section [] the implementation thereof by giving an overview over the provided classes and functions. Section
[6] contains additional information, the answers to frequently asked questions and the authors’ contact data.

2 Setup and Execution

Getting the latest toolbox version

The latest official release of the LRP Toolbox is available for download from the official homepage:
http://heatmapping.org

For using the Matlab implementation, download and merge the following archives:
lrp_toolbox.matlab.zip containing the source code

models mnist mat.zip containing Matlab readable model files

datamnist mat.zip containing the MATLAB readable MNIST data

For using the python implementation, download and merge the following archives:
lrp_toolbox_python.zip containing the source code

models mnist nn.zip containing python-readable model files

datamnist._npy.zip containing the numpy readable MNIST data

There are also plain text versions for the MNIST data and pre-trained neural network models available
for download, which can be read by both the python and Matlab implementations.

For using LRP within the Caffe Framework download
lrp_toolbox_caffe.zip containing the extended caffe source code, .cpp- and .hpp-files -files implement-
ing tools to compute heatmaps from images using Caffe and some example images.

http://heatmapping.org
https://github.com/sebastian-lapuschkin/lrp_toolbox
http://heatmapping.org

More work-in-progress versions of the toolbox code and future release candidates may be obtained via
https://github.com/sebastian-lapuschkin/lrp_toolbox.

Platforms and Requirements

The python and matlab implementations are available for systems running Linux, Windows and OSX due to
the platform agnostic nature of python and Matlab. Caffe runs on Linux and OSX, however Caffe ports for
Windows became available very recently on github (e.g. https://github.com/happynear/caffe-windows).
Known and successfully tested minimum package requirements are:

python Matlab Caffe

python 2.7.5+ Matlab 8.3.0.532 (R2014a) Caffe-own requirements:
numpy 1.7.14 optional: Boost Libraries (1.55.0)
matplotlib 1.3.0+ Image Processing Toolbox | Protocol Buffers:
skimage 0.8.2+ libprotobuf (2.5.0)

protobuf-compiler (2.5.0)
Google logging: libglogs (0.3.3)
Google Flags: libgflags (2.0)
HDF5: libhdf5 (1.8.11)
Google Snappy: libsnappy (1.1.0)
LevelDB: libleveldb (1.15.0)
Lightning Mem-mapped DB:

liblmdb (0.9.10)
ATLAS OR OpenBLAS OR
Intel Math Kernel Library
(tested with: libatlas-base-dev 3.10.1)
OpenCV>2.4
for the LRP heatmap computation binaries:
ImageMagick (6.7.7)

where the requirement listing for the LRP implementation on Caffe only lists the additional requirements be-
yond those for the caffe itself, which can be taken from http://caffe.berkeleyvision.org/installation.
html

Installing and Running
Matlab and python

The toolbox implementations for Matlab and python can be run out of the box, given all requirements in
Section [2] are fulfilled. After downloading the toolbox as .zip- or .tar.gz-archives and unpacking and
merging its contents to disk, the demo applications can be executed (with [optionall substrings indicated
by brackets) as

cd <toolbox_location>/matlab
matlab -nodesktop -r lrp_[cnn_Jdemo

for the Matlab implementation and

cd <toolbox_location>/python
python lrp_[cnn_J]demo.py

for python. On systems running Ubuntu 14.04 LTS (other versions might also be supported), executing

cd <toolbox_location>/python
sudo bash install.sh

https://github.com/sebastian-lapuschkin/lrp_toolbox
https://github.com/happynear/caffe-windows
http://caffe.berkeleyvision.org/installation.html
http://caffe.berkeleyvision.org/installation.html

will install all required software packages, download the MNIST [6] data set and several neural network
models trained to discriminate between digit classes and then execute lrp_demo. Please read and modify
install.sh carefully to suit your needs.

Caffe open-source package

The LRP implementation for Caffe has been forked from the Caffe repository on October 3rd 2015 (rc2).
After fulfilling all requirements listed above, execute

cd <toolbox_location>/caffe-master-lrp
make clean
make all

Note that the Caffe-based LRP implementation currently only supports execution only on CPUs and already
provides a correspondingly condigured Makefile.config.

After successfully building Caffe, navigate to the subdirectory demonstrator and execute build.sh (in-
clude and library paths might have to be adjusted) to compile the executables 1rp_demo, 1rp_parallel demo,
lrp_demo minimaloutput and lrp_parallel demo minimaloutput for sequential and parallel heatmap com-
putation respectively. Note that while the binaries ending in -minimaloutput will only write out plain text
relevance maps and the ten dominantly predicted classes, while the other binaries will also produce images
showing the actual resized and padded network input, as well as a heatmap visualization as images.

The provided script download model.sh may be used to download and extract the BVLC reference Caffe
network model. To use your own caffe files, simply adapt the configuration files.

cd <toolbox_location>/caffe-master-lrp/demonstrator
./build.sh
./download_model.sh

The caffe heatmap computation binary then called as e.g.

./lrp_demo ./config_sequential.txt ./testfilelist.txt ./

Where config sequential.txt is the config file for the sequentially operating binary. testfilelist.txt
lists image names to compute heatmaps for, with an optional prediction target. The contents of both files are
discussed further below in Section The last parameter — here ./ — as a path prefix added
to each image file in testfilelist.txt. Should the paths in testfilelist.txt be full paths already, /
should be the working choice. The first part of above command ./lrp_demo ./config sequential.txt
[...] may be exchanged to ./lrp_parallel _demo ./config.txt [...] to process all images listed in
./testfilelist.txt in parallel at the cost of increased memory consumption.
On systems running Ubuntu 14.04 LTS (other versions might also be supported), executing

cd <toolbox_location>/caffe-master-lrp
bash install.sh

will install all required software packages, build Caffe and the demonstrator application and compute a small
set of heatmaps for chosen example images.

3 LRP for Artificial Neural Networks Summarized

Refreshing neural network prediction

Artificial neural networks are commonly built from layers of computation

Zij = T;Wij (1)
zj = sz +b; (2)
zj = 9(z)) (3)

where z; is the ith index of the input « of a (hidden) layer I, with w;; connecting the ith unit from layer
[to the jth unit of the succeeding layer [+ 1. The variables z;; describe the forward messages from the
input neurons i to the output neurons j, which are then aggregated by summation together with a bias
term b;. An optional non-linear activation function is described by g. Commonly used non-linearities are
the hyperbolic tangent g(z;) = tanh(z;), the rectifying linear unit (ReLU) g(z;) = max(0, z;) or a softmax
function g(z;) = exp(2;)/ > exp(zj).

Multilayer neural networks stack several of these layers, each of them composed of a greater number of
neurons. This formulation of neural networks is also sufficient to cover a wide range of architectures such as
the simple multilayer perceptron or convolutional neural networks.

LRP for Artificial Neural Networks

While the forward pass through an artificial neural network sends messages from the nodes from one layer to

the succeeding ones, computing a final layer prediction starting at the input step-by-step, LRP moves over
(1,141)

ic-j sent from a

the layers in opposite direction to resolve the classifier’s output as relevance messages R
layer [+ 1 to its predecessor I:

Knowing the relevance R§l+1) of an upper layer neuron j at layer {41, the goal is to obtain a decomposition
into relevance messages which can then be aggregated again at the receiving nodes ¢ in layer [. As expressed
in [I], a set of constraints

i—J

I+1 Li+1
R§+):ZR(+) (4)

l 1,1
R =3 RUTY (5)

J

must hold for the total amount of relevance to remain constant, e.g.

dim(x)
f@)y=--= > RM=SgrV=...= 3 R -
je(l+1) ie(l) d=1

ensuring the relevance conservation principle of LRP holds.

Deep neural networks are sequences of linear or convolution layers alternating with non-linear activations
and/or pooling steps and the decomposition process of LRP operates in a layer-by-layer manner. In the case
of a linear fully connected layer

Zij = wawig 2=)z + b (7)
i
such a decomposition is immediately given by R;.; = z;;. Therefore, a first possible choice of relevance
decomposition is given as

RUHD _ Zﬂ _ R§l+1) 8)

4] zj

easily showing to approximate the conservation properties of Equation [6] Specifically,

ZR(I A1) (H—l) . (1 . bi) (9)

i4—7J Z]

since the bias term b; does inject information during the forward pass as an always active input node and
absorbs (or injects) relevance during the application of LRP proportionately. Note that a treatment of the
bias term as a weight connected and constantly activated input node o with zowo; = b;, above formula uni-
formly yields a decomposition into relevance messages proportionally to the forward messages Gg) O Zij-
While the treatment of convolutional and pooling layers is identical to that of fully connected layers, activa-
tion layers operate in a component-wise manner, i.e. z; = g(z;) < 2;; = g(x;)d;;, where g(-) is a non-linear

(L,141)

i) for

activation function and d;; describes the kronecker delta. Consequently, the relevance messages R,
activation layers describe an identity function RZ@ = R(Hl), making LRP a piece-wise linear decomposition
process for each layer. However, the integration of the forward-passed and potentially non-linear activations
x; into the z;; of Equation [§] (and the following decompositions below), renders LRP an in overall non-linear
and unsupervised per-sample explanation method.

Once a message decomposition formula has been selected from Equations [§] to — all of which are
part of the toolbox implementation — the lower layer relevances Rgl) are computed as a sum aggregation of
incoming messages in consistency with the constraints in Equation [] andp}

Rgl) _ Z R+ (10)

'L(—]
J

Decomposition Variants and Parameters

The e-decomposition formula. The disadvantage of the decomposition in Equation [§] is that relevance

messages R(l l+1) may become unbounded for very small z;, which can be circumvented by introducing a
&gn—dependant numerical stabilizer € in the denominator.

RUHD _ ~ij . RUFD 11
g zj +e-sign(z;) 7 (11)

This approach, although being an easy to understand and straight-forward solution to the issue of numerical
instability, does leak relevance into € and even may fully absorb relevance if € becomes very large. The
e-decomposition formula explains the predictor output “as-is”, while control over noisy explanations may be
exerted via setting € to appropriate values.

The o — f-decomposition formula. An alternative and numerically conservative stabilizing method is
the a— B-method (or shorter, just a-decomposition). This decomposition treats the activating and inhibiting

activation factors of a layer separately, e.g. let z;r =3, z” + bJr and z;° =3 z;; + b with

Z+= Zij s Zij>0 and Z;: Zij 3 Zl'j<0 (12)
0 ;else J 0 ; else

and bt and b~ being subject to the same rule. The relevance decomposition into messages Rgf’_lﬂ) as a
weighted combination of positive (activating) and negative (inhibiting) contributions is then calculated as

(LI41) _ 2 Zij (1+1)
R a-;-i—ﬁ-:_ - R; (13)
J J
Adding the constraint a+ 3 = 1 ensures the relevance conservation principle to hold and reduces the number
of added free parameters to one.
This decomposition method is especially usefull when paired with a networks making use of ReLLU acti-
vation layers, since hidden layer inputs will always be > 0 and their pre-activation outputs also need to be

> 0 to “fire”. This means that positively weighted connections w;; — which all factor into z;; — propagate
the inputs in an activatingly, while negative weights create deactivating messages z;;. So by choosing «
(and therefore) appropriately, allows to choose what is backwards-propagated in terms of relevance. For
example setting o = 1, causes = 0 will result in relevance maps which yield insight into which features
cause neuron activations, while « = 2, 8 = —1 yields a more balanced explanation with still more focus on
the neuron-exciting inputs. Be careful, however, with setting a variable to 0: Sum-pooling after a ReLu
activation layer will only yield positive activations. Here, setting o = 0, 8 = 1 will result in no heatmap at

all, since there are no inhibiting layer inputs to propagate the relevance to.

The w?-decomposition formula The w?-rule was first introduced in [7] and is obtained by choosing
the closest root to @ in direction of maximal descent when using Deep Taylor Decomposition. Although it
might seem that this decomposition is independent to the input data, the resulting heatmap explanations
are unique for each data point through the influence of R(). The relevance messages for this decomposition
compute as

R+ _ wi2j r® (14)
14— 2
J ; w?; J

This decomposition might come in handy when the resulting relevance map when using Equations [I1] or

are too sparse for the intended purposes, e.g. because the input level activations include zero valued variables

(LI+1) _ g

which can not absorb any relevance (z;; = Ow;; = 0= R;/;), or it is in general desirable to reduce

the resolution of the explanatory heatmap.

Flat weight decomposition The flat weight decomposition removes any model- and data-dependant
influence for the decomposed layer altogether (except model- and data-specific relevance input from R(”l)),

by simply projecting the upper layer relevance values Rl(t_jl) uniformly towards their receptive fields.
iy _ Lo
R; = =R, (15)

1] Zl J

The resulting relevance maps will yield explanations of input representations in higher network layers, poten-
tially changing the semantics of the heatmaps. This decomposition method is further discussed in [2]. Note
that for fully connected layers, the application of Equation [I5]will yield completely uniform and structure-less
relevance maps. Using Equation [14] instead is advised.

4 Implementation and Examples

This section will provide detailed information about the implementation of the LRP Toolbox and demon-
strates the basic workflow.

How to use the toolbox: Parameters and Results
The use of the LRP toolbox requires in general

e A pre-trained neural network model

e Data for performing a neural network prediction and LRP

e Parameters for the LRP algorithm (optional)
with the usual workflow consisting of the following steps:

1. Obtain trained classifier f(-) and data compatible with classifier

2. Forward-pass data @ through classifier, obtain yprea = f(2). The forward pass is not only necessary
to obtain a prediction ypreq but more importantly to populate the classifier’s internal variables with
information specific to x.

3. Apply LRP to obtain input layer relevances R{(jl) explaining the decision of the classifier for x ...

e wrt to the prediction ypreq

e or: wrt to a chosen prediction target ychoice

by setting the desired final layer relevance as input to LRP. See [I], mini.{py,m}, lrp_demo.{py,m}
and lrp_cnn_demo.{py,m} for details and examples.

4. Visualize input-layer relevances Rgll) as a heatmap (optional)

Examples and Interpretation of Results

The LRP Toolbox provides working examples on pre-trained models for the MNIST [6] data sets for the
python and Matlab implementations and an example implementation of an LRP application for arbitrary
photographic image data for Caffe. Data and models for the Matlab and python examples in respective
binary formats and a shared plain text format are provided accordingly. For Caffe, exemplary image data
is provided within the download archives and a reference model and corresponding meta information can be
downloaded by following above installation steps. In the following, minimal working examples for both Mat-
lab and python demonstrate the basic workflow with Figure[I| presenting the resulting images. Both minimal
working examples are included as <toolbox_path>/matlab/mini.m and <toolbox_path>/python/mini.py
Matlab python

% imports # imports
import model_io.* import model_io
import data_io.* import data_io
import render.* import render

% end of imports
import numpy as np
na = np.newaxis

end of imports

% read model and MNIST test data # read model and first MNIST test image
nn = model_io.read(<model_path>); nn = model_io.read(<model_path>)
X = data_io.read(<data_path>); X = data_io.read(<data_path>) [na,O0,:]

% pick first image, normalize to [-1 1]
X =X(,:) / 127.5 - 1;

% forward pass through network

Ypred = nn.forward(X);

% apply lrp to explain prediction of X
R = nn.lrp(Ypred);

% render rgb images and save as image
digit = render.digit_to_rgb(X);

% render heatmap R, use X as outline
hm = render.hm_to_rgb(R,X);
render.save_image({digit,hm},<i_path>);

normalized data to range [-1 1]
X=X/127.5 - 1

forward pass through network
Ypred = nn.forward(X)

1lrp to explain prediction of X
R = nn.lrp(Ypred)

render rgb images and save as image
digit = render.digit_to_rgb(X)

render heatmap R, use X as outline
hm = render.hm_to_rgb(R,X)
render.save_image([digit,hm],<i_path>)

Interpretation of Heatmap Scores
1)

LRP computes a relevance score R’ for each component of the classifier input z4 in its given state. For the
given model (high) positive values f(x) indicate the presence of an object or concept in an input sample.

7 T2 71

a) Matla rue class) python : true class) python : class
Matlab : t 1 th t 1 th lass 2

Figure 1: (a) and (b) : Heatmap visualizations computed as a result of the execution of both above
listed code samples. (c) : The input digit explained as a 2 by setting input for nn.lrp() to
np.array([0,0,1,0,0,0,0,0,0,0]) [na,:]. The image is a result of the python implementation. For
both languages, the input parameters in angle brackets specifying the loaded model and data locations have
been set to

<model _path> = ’<toolbox_path>/models/MNIST/long-rect.txt’ and

<data_path> = ’<toolbox_path>/data/MNIST/test_images.txt’

The resulting rgh-images have been written to a location specified by <i_path>. Slight differences in digit
outlines and color hue are the result of internal differences of the used color maps and edge detection func-
tions provided by Matlab and the respective python modules. The heatmaps themselves can be expected to
be identical for both implementations, up to the limits numerical precision.

Likewise, positive values RS) argue for evidence for the presence of a concept — the (chosen) prediction
target — via the state of xg.

Figures (a) and (b) demonstrate heatmaps for an input digit showing a hand-written 7 next to a heatmap
visualizing the input layer relevance values rating the input pixel’s contribution towards the detection of a
digit 7, as computed with the samples implementations in mini.{py,m}. (High) positive scores are visualized
in orange to red color, while colder color hues signify neutral (green) to negative (blue) contributions to the
detection of class 7.

Note that due to the heatmap the top horizontal bar of the digit has been identified as a striking feature
of the detected class, the "leg” of the hand written digit is rated as less important. This can be explained as
this feature can be shared by digit classes 2,4 and 9, while a straight horizontal bar at the top is not. Digits
of class 5 however might share this feature, yet (due to our observation) tend to be angled differently in
general, e.g. sloping down to the left more. Note the also strong positive evidence outside the written digit:
At the bottom, a small area has been identified as containing high positive evidence speaking for class 7,
with a less pronounced counterpart to the right. This can be interpreted as the absence of color contributing
to the 7-ness of the data point. In other words: If those pixels would be colored black, the digit would more
closely resemble a 2. The same interpretation can be applied to the horizontal bar at the top of the image.
LRP attributes high relevance to the blank pixels above and below the horizontal bar. Coloring those pixels
black would cause the 7 to resemble a thickly drawn digit 9. Note the negative evidence — speaking against
the 7-ness of the input digit — to the left of the top bar of the 7, explaining that the classifier would predict
the input image as a seven with increased certainty, if the horizontal bar would be longer. This example
shows, that heatmaps computed by LRP are not segmentation masks but rate each input unit — on top of
the object and in background areas — according to how their state influences the prediction of the classifier
output.

Figure (c¢) demonstrates the capability of the LRP algorithm to explain would-be decisions of a classifier,
e.g. in the above case why and how the input digit resembles a 2 in the eyes of the classifier, or what parts
are considered wrong. The classifier considers the empty space below the angle at the top of the seven as
evidence for the digit being a 2, yet attributes negative evidence to the digit’s pointy end to the top right,
since the typical member of class 2 can be expected to be more round in shape. The classifier also identifies
most of the "foot” as missing (rather: as unexpected for the explanation target) in the input digit, in order
for it to more closely resemble a digit 2.

Pixel-wise explanation always need to be interpreted in context of the problem the classifier has been
trained to solve, or vice versa provide an insight to the problem setting with its peculiarities in the first
place (E.g. for an application of LRP leading to interesting discoveries about the Pascal VOC [3] data set,
see [A]).

Implementation

The Matlab and python stand-alone implementations of the LRP Toolbox are designed to be as identical
as possible in structure, while the LRP code for Caffe is conceived as a plugin to replace existing neural
network layer implementations. Throughout this section, the structure and functionality of the Matlab and
python implementations will be described in detail, followed by a delimination of the modifications made to
the Caffe code in oder to support LRP. Additionally to the descriptions of modules, packages and functions
found below, a documentation can be found within the uncompiled code itself.

Efficiency

The python implementation of the LRP functionality heavily relies on numpy for efficiency, which shares the
the use of LAPACK and BLAS with Matlab. LRP for Caffe does currently only support (parellel) processing
on the CPU, using ATLAS, OpenBLAS, etc .

Data Import / Export

Data — python : Data can be read and written with data_io.read() and data_io.write() and is
assumed to be block-formatted as a [N x D] matrix. Supported are plain text ascii-matrices as
.txt files, numpy’s .npy and .npz formats and also .mat files via scipy.io. For the latter, the
toolbox assumes the file to contain one matrix accessible via the key data.

— Matlab : The Matlab implementation realizes data IO via +data_io.read() and +data_io.write()
and supports .mat files next to plain text ascii-matrices in [V x D] block format.

— Caffe : The add-on for Caffe loads images using ImageMagick and thus supports a wide range of
image data including JPEG and PNG.

Models — python : The python implementation can read and write neural network model files via functions
model_io.read() and model_io.write(). Supported are python’s pickle object serialization
format and a plain text file format shared with Matlab and described further below. Default file
name extensions for the pickled in- and output format are .nn and .pickle and .txt for the
plain text description of the model. See the manual for details.

— Matlab : Supported are the with python shared plain text model description via .txt files and
.mat files holding model information. Reading and Writing can be realized using +model_io.read()
and +model_io.write().

— Caffe : It is able to read the models trained with the Caffe package, e.g. those from the Caffe
Model Zoo.

Heatmaps — python: The output of raw heatmap data can be managed using the module data_io. Visualizing
and writing the heatmap as rgb images is achieved using the functions render.hm to_rgb() and
render.save_image(). The former converts an input relevance matrix or vector using a color
map to a rgb image and the latter combines and writes a series of images in various formats.

— Matlab : The Matlab implementation offers the same functionality as its python counterpart via
correspondingly named functions provided in package +render. An example on how to use these
functions to draw and save heatmaps is given in the demo implementation.

— Caffe : The C++ version outputs four files into the path specified in the configfile as standalone_outpath.
The first two files,
(tmage filename)_as_inputted_into_the_dnn. jpg and
(tmage filename) heatmap. jpg are simply the image how it looks like when it enters the quadratic
receptive field of the neural network, and the resulting heatmap. While they are easily to be read
in image viewers, they are unsuited for further processing of the heatmap. For that reason the
file
(imagefilename) _rawhm.txt provides a the raw unnormalized heatmap scores as plain text.
For a detailed explanation of the format of this file please refer to the manual. The last file,
(tmage filename)_toptenscores.txt outputs the indices of the highest ranked classes and their

10

scores. Note that when using the *_ minimaloutput - implementations, only the plain text outputs
will be generated.

Matlab and python modules

The stand-alone implementations of Matlab and python have been designed with a highly similar module or
package structure within the possibilities of the programming languages. Modules for python are realized as
single *.py-files containing all the module’s functions. Synonymous to the modules of python are packages
for Matlab, sharing the same names as their python counterparts. The difference is that packages for Matlab
are realized as folders (with a leading + sign in front of the package name for Matlab to identify the folder as
a package), with all implemented package functions or classes located as separate .m-files therein. The names
and functionality of all implemented functions are to a large extend identical in between both stand-alone
implementations and will therefore be outlined in unison. Notable differences will be highlighted in the
respective descriptions using the flags <Matlab-specific>M2t2Pand <python-specific>PY*ho%in case certain
traits are not shared between the implementations. The descriptions of modules and packages are synony-
mous for a structural description and will be considered interchangeable. The following description will start
with explaining the functions 1lrp_demo, lrp_cnn_demo and mini as entry points to example implementations
first and continue with the module structure. For a more detailed in-depth description of class- and method
signatures please refer to the source code.
Example implementations of the LRP pipeline:

e lrp_demo : This demo loads the MNIST test data set and a pre-trained classifier with rectification
activation units. After normalizing the test data, LRP is performed on a selection of test data points,
followed by rendering and saving the produced heatmap. Examples on how to choose a LRP decom-
position method or prediction targets are given yet commented out. This script displays each rendered
heatmap to the user.

e 1lrp_cnn_demo follows the structure of 1rp_demo, but instead uses a pre-trained LeNet-5 convolutional
neural network. In this script, functionality for also setting lrp parameters for each neural network
layer, as introduced in version 1.2.0 of this toolbox, are demonstrated.

e mini : A minimal execution example for LRP for only one data point from the MNIST test data set.
Package structure:

e data_io provides functionality for reading and writing block-formatted data matrices in various for-
mats.

— read(path, fmt) reads a data matrix from disc, located at path. If fmt is not given, the correct
file format is inferred from the extension of path. Supported extensions / values for fmt are
ynpy PYthon | oppzoPython - ospyt - omat’. Returns a matrixM22Por numpy arrayPythor,

— write(data, path, fmt) receives a data matrix data and writes it to path in format fmt. If fmt
is not given, the correct file format is inferred from the extension of path. Supported extensions
/ values for fmt are ’npy’PY*BR | Inpz PYHROR - syygo | imat’.

e model_io provides an IO interface to read and write serialized neural network models in various formats.

— read(path, fmt) reads a neural network model from path, assuming a format fmt. Should fmt
not be given, it — and with that the correct way to read — will be inferred from the file name
extension in path. Supported formats and values for fmt are ’pickle’PY*8R ’pjckled’Py*hon,
'pn’PYEROR oyt Ipat Matlab where the python-specific formats are implemented using python’s
pickle module and txt is a plain text model description format shared between Matlab and
python explained further below. Returns the neural network model as an instance of modules.Sequential.

— write(model, path, fmt) writes a neural network model represented via an instance of modules.Sequential
to path in a given output format fmt. Should fmt not be given, it will be inferred from
the file name extension in path. Supported formats and values for fmt are ’pickle’Py*hen,

11

’pickled’Python | oppoPython - opygo - opat Matlab where the python-specific formats are imple-
mented using python’s pickle module and txt is a plain text model description format shared
between Matlab and python explained further below.

e modules

— Module implements an abstract class for neural network modules, defining a common interface
which all other classes inheriting Module implement. The inherited default behaviour of all method
stubs is to do nothing when called.

x If not implemented by inheriting methods, the function forward(X) will return X without
change.

* set_lrp_parameters(lrp_var,lrp_param) allows to pre-set Irp parameters per layer, with
lrp_var identifying the desired decomposition method per name as string type input, and
lrp_param providing a method-specific parameter.

* 1lrp(R, lrp_var, param) performs LRP wrt to an initial relevance input R and a previously
fed-forward batch of data via a call of forward(X). The parameters lrp_var and param are
optional. If not given, the model (e.g. each layer) tries to use pre-set Irp parameters or will
default to the simple Irp implementation from Equation
lrp param € { NonePY*®on —[]Matlab pone’ | ’simple’, ’epsilon’,’eps’, ’alphabeta’,
’alpha’,’ww’,’w"2’,’flat’ } defines the decomposition alternative to use for all layers
during the application of LRP. By default, the simple decomposition method in Equation
will be applied, or any specific Irp parameters set using set_lrp_parameters. Setting the
parameter to ’epsilon’ or ’alphabeta’ will cause the application of Equations [11] and
respectively. >eps’ and ’alpha’ are short equivalents for both methods. ’ww’ or w™2’ will
apply Equation [[4 and ’flat’ will apply Equation [I5] Some layers do have default fall-back
decompositions when the provided decomposition choice does not make sense.

The parameter param may be used to set the corresponding free parameters € and « of both
methods. Default value is [1"2*12® or NonePython,

— Sequential represents the instance of an artificial neural network.

* Sequential (modules) Constructor. The parameter modules is an enumerable collectionPYthon /
cell arrayMatabof instances of class Module as computational layers of the network.

x forward(X) receives an input X, propagates it through the network and populates the network
with input-specific data and internal data representations. Returns a network output.

* train(X, Y, Xval, Yval, batchsize, iters, lrate, lrate._decay, lfactor_initial,
status, convergence, transform) implements a training procedure for the neural network
implementation, using the error backpropagation algorithm. train receives a set of training
data X and training labels Y, on which the network is trained over iters (default is 10000)
training iterations with mini batches of batchsize (default 25) samples at a time. Every
status (default is 250) training iterations, the network is evaluated on the validation data
Xval with labels Yval. If no input for the validation set is provided the whole training data
is used for estimating the prediction performance. A training iteration consists of a forward
pass of a minibatch, a backward pass of the delta between the prediction and the expected
results followed by an update step. The speed of learning is determined by lrate (default is
0.005). lrate_decay controls whether and how the learning rate will diminish during trainig,
depending on the network performance. The default value is *none’, with alternatives being
’linear’ and ’sublinear’. 1factor_initial (default 1.0) is a multiplicative factor to the
base learning rate. Using this, with multiple consecutive calls of train allows for a step-wise
decrease in the learning rate over the complete network training. convergence (-1) is an
integer value defining the number of iterations allowed without measurable network improve-
ments, until model convergence is declared and the training is stopped. Values smaller than
zero will disable this convergence check. The input variable transform accepts the handle of
a function, which is to be applied to each input batch. This allows for slight input transfor-
mations, such as the addition of noise, etc. Default value is None, which is equivalent to the
application of an identity function (aka. does nothing).

12

x backward (DY) performs a backward pass through the network, taking the error gradient DY
as input.

*x update(lrate) updates the network modules, after the error gradient has been computed
using backward. lrate is a multiplicative factor determining the training velocity.

* 1lrp(R,lrp_var, lrp_param) The method returns first layer relevance values Rfll). See the
description of modules.Module.lrp for details.

x clean() iterates over all layers of the neural network and calls clean() on the implementing
modules, removing temporary data necessary for LRP which has been memorized during the
forward pass. This method is called in model_io.write().

— Linear represents a linear layer.

* Linear (m,n) creates a linear neural network layer instance with m input dimensions and n
output dimensions.

x forward(X) performs a forward-pass of the input X and returns an n dimensional output by
applying Y = XW + B, where W is a weight matrix, B the bias term and Y the output.

% 1rp(R, lrp_var, param) performs LRP with upper layer relevances R+t1) and returns rel-
evance values R for the layer input. See the description of modules.Module.1rp for details
on the possible range of parameters.

— Tanh implements an activation layer with non-linear tanh units.

x forward(X) applies the tanh function to the input X and returns the result.
— Rect implements a rectification activation layer.

* forward(X) computes and returns max(0, X)

— SoftMax implements a soft-max normalization layer
* forward(X) computes and returns Vi % for each row of X
J

e render provides functionality to draw and save relevances and heatmaps as rgh-images

— digit_to_rgb(X, scaling, shape, cmap) renders a given data point X as a rgh-image using a
color map cmap. The parameter shape specifies the original shape of X, to which the data is
reshaped. The default value depends on the default behaviour of render.vec2im(). scalingis a
positive integer vector describing a scaling factor, by which the image is enlarged (after reshaping)
by pixel value replication.

— hm_to_rgb(R, X, scaling, shape, sigma, cmap, normalize) operates in a similar manner as
render.digit_to_rgb, but renders the input heatmap R as an rgb-image and uses the data point
X to compute an outline to overlay it with the heatmap image. For Matlab, this requires the
availability of the Image Processing Toolbox. The parameter sigma is forwarded to a call of a
canny edge detector for computing the outline of X. normalize controls whether the input heatmap
R is to be normalized such that max(|R|) = 1. Returns the visualized heatmap as rgbh-image (a
[H x W x 3] - sized matrix*12bor numpy . ndarrayPython)

Matlab ythoni

— enlarge_image(img, scaling) receivesa [H xW]or [HxW x D] matrix or numpy .ndarray”
and a positive integer value scaling as scaling factor and returns a [H - scaling x W - scaling]
or [H - scaling x W - scaling x D] output of the same type by pixel value replication.

ng

— repaint_corner pixels(rgbimg, scaling) receivesa [H xW x3] - sized rgb image as matrix™?"abor

numpy . ndarrayP¥*°"and a positive integer value scaling and replaces the bottom right and top
left pixel rgb values with the color mean of all neighbouring pixels, in order to mask artificial
heatmap responses as a result setting relevance anchor values during heatmap normalization.
scaling holds information about the pixel size after scaling the image. This workaround was/is
necessary for successfully applying color maps using matlab and has become obsolete for the
python implementation with toolbox version 1.2.0, thus has been dectivated in digit_to_rgbPython,

Matlab ython

— vec2im(V, shape) receives a matrix or numpy.ndarray? and returns it shape-shaped.
If shape is not given, the algorithm tries to reshape V such that its side lengths are equal.

13

— save_image(rgb_images, path, gap) receives a series of rgb images in an enumerable containerPY*homor
cell arrayMa12Pand concatenates them horizontally. In between the images, a column of black pix-
els gap pixels wide is introduced. The assembled image is then returned as a [H x W X 3] - sized
matrixM22Por numpy . ndarrayPY*"°"and written to path, where the file name extension of path
controls the output format.

Caffe

For implementing LRP for the Caffe open source framework, several source files have been edited to
support the required functionality, which can then be used by the example implementations in subfolder
toolbox_path/caffe-master-lrp/demonstrator/. Modified files and changes made are listed below:

e include/caffe/ : Contains the following modified header files which now define interfaces for LRP
functionality

— common_layers.hpp

— data_layers.hpp

— layer.hpp

— loss_layers.hpp

— net.hpp

— neuron_layers.hpp

— relpropopts.hpp : newly added file

— vision_layers.hpp
e src/caffe/ : Contains the following modified code files implementing the LRP steps

— layer.cpp
— net.cpp
x layers/
- base_conv_layer.cpp
- concat_layer.cpp
- conv_layer.cpp
- data_transformer.cpp
- dropout_layer.cpp
- hinge_loss multilabel_layer.cpp : added with version 1.0.1
- image_data_layer multilabel.cpp : added with version 1.0.1
- inner_product_layer.cpp
- loss_layer.cpp
- 1lrn_layer.cpp
- 1lrn_layer.cu
- neuron_layer.cpp
- pooling_layer.cpp
- relu_layer.cpp
- softmax_layer.cpp
- split_layer.cpp

14

Relevant C+-+ Interfaces

There are two different interfaces, in class net (in net.hpp and net.cpp)

void net::Backward_Relevance(const std::vector<int> & classinds,
vector<vector<double> > & rawhm,
const relpropopts & ro);

and
void net::Backward_Relevance_multi(const std::vector< std::vector<int> > & classinds,
vector< vector<vector<double> > > & rawhm,
const relpropopts & ro);
The first one computes the heatmap for exactly one image. The second computes heatmaps for multiple
images in at once which is in line with the ability of Caffe to compute a parallel forward pass. See in

the model definition files the initial 10 in

input_shape {

dim: 10
dim: 3
dim: 227
dim: 227

}

which can be found in the file deploy.prototxt as part of the model description. This means that this
model file allows to compute a 10-fold parallel forward pass. void net::Backward Relevance multi
can be used with such a file to compute a 10-fold parallel LRP backward pass. Both interfaces require
a forward pass to be run before calling them. The result is at best undefined otherwise.

For the first interface:

classinds contains the indices of all classes, for which the heatmap is to be computed as a composite
of their respective network output scores.

rawhm[ch] [h+w*height] contains the heatmap score for channel ch (ch=0 is red, ch=1 is green, ch=2
is blue. The order is RGB unlike the internal BGR order of Caffe.), in y-coordinate h (h=0 is the
topmost coordinate of the image), and in x-coordinate w (w=0 is the leftmost coordinate of the image).

The second interface is a vectorized version of the first interface, i.e. classinds[k] has the same
meaning as classinds in the first image, being applied to the k-th image. The same holds for rawhm [k]
which is the same as rawhm for the first interface, with the input corresponding to the k-th image.

relpropopts (found in include/caffe/relpropopts.hpp) is a class which carries the options used
for LRP. The options are as follows:

relpropopts.numclasses the number of classes of the classification problem

relpropopts.relpropformulatype:

— 0 for the e-type formula
— 2 for the a — B-type formula
— 11 or 99 for Sensitivity Analysis [8]

— 26 for Deconvolution [9]

54 for € and flat decompositions below a given layer

56 for € and w? decompositions below a given layer

58 for o — 8 and flat decompositions below a given layer

15

— 60 for a — 8 and w? decompositions below a given layer

relpropopts.alphabeta_beta the beta for the a — S-type formula
relpropopts.epsstab the € for the e-type formula

relpropopts.lastlayerindex is the index of choice of the highest layer, e.g. the starting point for
LRP.

auxiliaryvariable maxlayerindexforflatdistinconv proves the layer index from which on either
flat or w? relevance decomposition is performed (see 1rp.relpropformulatypes 54 to 60.

relpropopts.firstlayerindex is the index of the lowest layer at which relevance scores are taken
and copied into the output vector of vectors rawhm.

the format of rawhm is determined by

const int channels = bottom_vecs_[i] [0]->channels();
const int hei = bottom_vecs_[i] [0]->height();
const int wid = bottom_vecs_[i] [0]->width();

Channel inversion is performed, which means that rawhm[ch] is taken from channel C-1-ch.

Other variables which are not supported in this release and have to be set to defaults (in parentheses)
are:

relpropopts.codeexectype (0)

relpropopts.lrn_forward type (0)
relpropopts.lrn_backward type (1)
relpropopts.maxpoolingtoavgpoolinginbackwardpass (0)

relpropopts.biastreatmenttype (0)

The shared plain text file format

The plain text file format is shared among the Matlab and python implementations of the LRP Toolbox and
describes the model by listing its computational layers line by line as

<Layername_i> [<shape parameters>]
[<Layer_params_i>]

The following layers apply component-wise transformations to the input and thus only require a single
line to be fully parameterized, e.g.

Rect
Tanh
SoftMax
Flatten

for ReLu non-linearities, tanh-units and the softmax and flattening layer respectively. The linear layer
implementation modules.Linear incorporates in raw text form as

Linear m n
W
B

16

with m and n being integer values describing the dimensions of the weight matrix W as [m x n] and W being
the human readable ascii-representation of the matrix, where W is reshaped to a s ingle vector in C-order
and written out as a white space separated line of floating point values. After the line describing W, the
bias term B is written out as a single line of n white space separated floating point values.

Both Max- and SumPooling layer share the same structure, except for the layer name:

SumPool hpool wpool hstride wstride
and
MaxPool hpool wpool hstride wstride

with hpool and wpool being the pooling operations respective height and width and hstride and wstride
being the vertical and horizontal stride between pooling applications.
Finally, Convolution layers are parsed out as

Convolution hf wf df nf hstride wstride
1)
B

where hstride and wstride serve the same purpose as for the pooling layers, and hf,wf,df and nf are the
filter bank’s height, width and depth (= input depth = number of input channels) and number of filters
(= output depth = number of output channels) respectively. As with the Linear layer W are the learned
weights, reshaped in C-order to a single vector written out as a single line of white-space separated values.
B is the vector if bias terms of the layer, equalling in length to nf.

An example of a simple network trained to solve the XOR-problem is given below. The model file is also
included as plain text in <toolbox_path>/models/X0R/xor net_small.txt

XOR-Solving Example Network

Linear 2 3

-2.01595799878 -2.05379403106 0.688953420218 1.20338836267 -1.7518249173 -1.90515935663
-0.519917325831 0.400368842573 0.0699950389094

Tanh

Linear 3 3

-1.18542075899 -1.62921811225 0.134698917906 0.111469267787 1.85227669488 [...]
0.116095097279 -0.0138454065897 0.0469443958438

Tanh

Linear 3 2

1.10940574175 0.26799513777 2.51842248017 -1.5497671807 -0.606042655911 0.197763706892
-0.115832556216 0.115832556216

SoftMax

5 Caffe specifics

Caffe output formats

The C++ version outputs four files into the path specified in the configuration file as standalone_outpath:

The first two files are

(tmage filename)_as_inputted_into_the_dnn.png and

(tmage filename)_heatmap.png. Those files are simply the image as it enters the quadratic receptive
field of the neural network, and the resulting heatmap. While they are easily to be read in image viewers,
they are unsuited for further processing of the heatmap. Note that both image files are not written out when
using the implementations named * minimaloutput. This code only writes out the results as plain the text
files described below.

17

(imagefilename) _rawhm.txt provides the raw unnormalized heatmap scores as plain text. The format
is as follows:

C

HW

[row 1 of channel 1]
[...]

[row H of channel 1]
[row 1 of channel 2]

[...]
[row H of channel 2]
[...]

[row H of channel C]

Where C is the number of (color) channels, which usually is 3. H and W are the height and width of the
output respectively, which are then followed by a concatenated plain text output of the heatmap responses
for all channels, where each row holds W entries.

The last file,

(tmage filename)_toptenscores.txt outputs the indices of the highest ranked classes and their scores
and consists of at most ten lines with each line listing the 0-based index of the corresponding class. It is less
than ten lines, if the classification problem has less than ten classes.

Caffe image file syntax

This file is denoted as testfilelist.txt in the above example. Each line contains two entries: Firstly, the
path to the image. Secondly, after a white space character, an integer value. If that value equals —1, then the
heatmap is computed for the highest top-scoring class. If the integer is —2, then the heatmap is computed
for the 5 top-scoring classes. Each output will be initialized with the score of the highest inner-product layer,
unless the option lastlayerindex in the config file specifies a different layer. If the integer is non-negative,
then the heatmap will be computed for the class with that index. An example testfilelist.txt is provided
with this release.

Caffe config file syntax

The configuration file syntax for LRP for Caffe is realized as pairs of lines, where the first line identifies
the variable to be set and the second line delivering the value. Example configuration files config.txt and
config sequential.txt are provided with this release.

e param file (string)
File of the caffe layer definitions as text file. Usually has the ending .prototxt. Check whether the
value dims: x in the prototxt file is appropriate for your case. If you process only one image, you
can set that to 1 and your code performs faster and uses less memory.

e model file (string)
File containing the Caffe model weights, usually as a binary file.

e mean file (string)
Absolute path to the image mean which gets substracted from the input image. Format is a Caffe blob
proto if the value of use_mean_file_asbinaryprotoblob is a positive integer.

e use mean file asbinaryprotoblob (integer)
Set it to a positive integer if you to load a Caffe blob protofile as mean file.

e synsetfile (string)
Absolute path to a file containing as many lines as number of classes, with each line being the class
label of the respective class.

18

e lastlayerindex (integer)
Index of the highest layer where to start back-propagating LRP scores. Possible choice: any non-
negative value for an explicit layer index, or —1 for auto-detecting the lowest oftmax layer or —2 for
auto-detecting the highest inner product layer.

e firstlayerindex (integer)
Possible choice: any non-negative value for an explicit layer index.

e numclasses (integer)
Number of classes of the classification problem.

e baseimgsize (integer)
Size of the largest side of the image after resizing, should be larger than netinwid and netinhei.

e standalone_outpath (string)
Path where to output the heatmap files.

e standalone_rootpath (string)
should be the name of a subdirectory in the full path name of the input image files. The part of
the path, starting at this string is appended to <standalone_outpath>. Exits with error if the full
path of the input image file does not contain this string. In particular, for the outputs written into
standalone_outpath, the path structure is preserved starting with standalone_rootpath. This is
helpful when two input images have identical filenames but are residing in different subdirectories.
Example:

— standalone_outpath is /home/user99/results/03102015

— Input file is /home/user99/data/data25092015/cats/cat03. jpg
— standalone_rootpath is data25092015

Then, outfiles are written as e.g. /home/user99/results/03102015/data25092015/cats/cat03. jpg-rawhm.txt

e relpropformulatype (integer)
Set to 0 for the e-type formula, 2 for the a-B-type formula, 11 or 99 for Sensitivity Analysis and 26 for
Deconvolution, 54 for e+flat, 56 for € + w?, 58 for a — S+flat and 60 for o — B + w?.

e auxiliaryvariable maxlayerindexforflatdistinconv (integer)
Defines the layer index below (and including) for which — for the relpropformulatypes 54 to 60 —
either flat or w? decomposition is applied instead of either € or o — .

e epsstab (float)
Value of ¢ for the e-type formula. Must be non-negative.

e alphabeta_beta (float)
Value of 3 for the a-B-type formula. Must be non-negative.

6 Contact and Support
For Answers to questions, help and support, please contact:
Sebastian Lapuschkin sebastian.lapuschkin@hhi.fraunhofer.de

Alexander Binder alexander_binder@sutd.edu.sg
Wojciech Samek wojciech.samek@hhi.fraunhofer.de

19

References

1]

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miiller, and
Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PLOS ONE, 10(7):e0130140, 2015.

Sebastian Bach, Alexander Binder, Klaus-Robert Miiller, and Wojciech Samek. Controlling explanatory
heatmap resolution and semantics via decomposition depth. In Proceedings of the IEEE International
Conference on Image Processing (ICIP), pages 2271-2275, 2016.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):303-338,
2010.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093, 2014.

Sebastian Lapuschkin, Alexander Binder, Gregoire Montavon, Klaus-Robert Muller, and Wojciech
Samek. Analyzing classifiers: fisher vectors and deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2912-2920, 2016.

Yann LeCun and Corinna Cortes. The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/, 1998.

Grégoire Montavon, Sebastian Bach, Alexander Binder, Wojciech Samek, and Klaus-Robert Miiller.
Explaining nonlinear classification decisions with deep taylor decomposition. Pattern Recognition, 2016.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visual-
ising image classification models and saliency maps. CoRR, abs/1312.6034, 2013.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In ECCV,
pages 818-833, 2014.

20

	Overview
	Setup and Execution
	LRP for Artificial Neural Networks Summarized
	Implementation and Examples
	Caffe specifics
	Contact and Support

