ICASSP 2017

Tutorial on Methods for Interpreting and Understanding Deep Neural Networks

G. Montavon, W. Samek, K.-R. Müller

Part 2: Making Deep Neural Networks Transparent

5 March 2017

Making Deep Neural Nets Transparent

Making Deep Neural Nets Transparent

- visualizing filters
- max. class activation
- include distribution (RBM, DGN, etc.)
- sensitivity analysis
- decomposition

Interpreting Classes and Outputs

Image classification:

Question: How does a "motorbike" typically look like?

Quantum chemical calculations:

Question: How to interpret " α high" in terms of molecular geometry?

The Activation Maximization (AM) Method

Let us interpret a concept predicted by a deep neural net (e.g. a class, or a real-valued quantity):

Examples:

- Creating a class prototype: $\max_{\mathbf{x}\in\mathcal{X}} \log p(\omega_c|\mathbf{x})$.
- Synthesizing an extreme case: $\max_{x \in \mathcal{X}} f(x)$.

Interpreting a Handwritten Digits Classifier

 \rightarrow optimizing max_x $p(\omega_c | \mathbf{x}) \rightarrow \rightarrow$

Fraunhofer

ICASSP 2017 Tutorial — G. Montavon, W. Samek, K.-R. Müller

Interpreting a DNN Image Classifier

goose ostrich

Images from **Simonyan et al. 2013** "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps"

Observations:

- AM builds typical patterns for these classes (e.g. beaks, legs).
- Unrelated background objects are not present in the image.

🚺 ጆ Fraunhofer

Activation-maximization produces class-related patterns, but they are not resembling true data points. This can lower the quality of the interpretation for the predicted class ω_c .

ldea:

• Force the interpretation x^* to match the data more closely.

This can be achieved by redefining the optimization problem:

Find the input pattern that maximizes class probability.

Find the most likely input pattern for a given class.

Improving Activation Maximization

Find the input pattern that Find the most likely input maximizes class probability. pattern for a given class. \mathcal{X} \mathcal{X} \mathbf{x}_0 \mathbf{x}_0

Improving Activation Maximization

Find the most likely input pattern for a given class.

Nguyen et al. 2016 introduced several enhancements for activation maximization:

Multiplying the objective by an expert p(x):

$$p(\boldsymbol{x}|\omega_c) \propto \underbrace{p(\omega_c|\boldsymbol{x})}_{\text{old}} \cdot p(\boldsymbol{x})$$

Optimization in code space:

$$\max_{\boldsymbol{z}\in\mathcal{Z}} p(\omega_c|\underbrace{g(\boldsymbol{z})}_{\boldsymbol{x}}) + \lambda \|\boldsymbol{z}\|^2 \qquad \boldsymbol{x}^{\star} = g(\boldsymbol{z}^{\star})$$

These two techniques require an unsupervised model of the data, either a density model p(x) or a generator g(z).

ICASSP 2017 Tutorial — G. Montavon, W. Samek, K.-R. Müller

Comparison of Activation Maximization Variants

simple AM (initialized to mean)	simple AM (init. to class means)	AM-density (init. to class means)	AM-gen (init. to class means)
0 X Q 3 3 3 3 3 3	05 16 28	05 16 27 38	05 16 27 38
99	49	49	49

Observation: Connecting to the data leads to sharper prototypes.

ICASSP 2017 Tutorial — G. Montavon, W. Samek, K.-R. Müller

Enhanced AM on Natural Images

Images from **Nguyen et al. 2016**. "Synthesizing the preferred inputs for neurons in neural networks via deep generator networks"

Observation: Connecting AM to the data distribution leads to more realistic and more interpretable images.

Summary

- Deep neural networks can be interpreted by finding input patterns that maximize a certain output quantity (e.g. class probability).
- Connecting to the data (e.g. by adding a generative or density model) improves the interpretability of the solution.

Limitations of Global Interpretations

Question: Below are some images of motorbikes. What would be the best prototype to interpret the class "motorbike"?

Observations:

- Summarizing a concept or category like "motorbike" into a single image can be difficult (e.g. different views or colors).
- A good interpretation would grow as large as the diversity of the concept to interpret.

Fraunhofer

Finding a prototype:

Question: How does a "motorbike" typically look like?

Individual explanation:

Question: Why is this example classified as a motorbike?

16/44

Finding a prototype:

Question: How to interpret " α high" in terms of molecular geometry?

Individual explanation:

Question: Why α has a certain value for *this* molecule?

Other examples where individual explanations are preferable to global interpretations:

Brain-computer interfaces: Analyze input data for a given user at a given time in a given environment.

Personalized medicine: Extracting the relevant information about a medical condition for a given patient at a given time.

Each case is unique and needs its own explanation.

- visualizing filters
- max. class activation
- include distribution (RBM, DGN, etc.)
- sensitivity analysis

19/44

- decomposition

Explaining Decisions

Goal: Determine the relevance of each input variable for a given decision $f(x_1, x_2, ..., x_d)$, by assigning to these variables *relevance* scores $R_1, R_2, ..., R_d$.

20/44

Basic Technique: Sensitivity Analysis

Consider a function f, a data point $\mathbf{x} = (x_1, \ldots, x_d)$, and the prediction

$$f(x_1,\ldots,x_d).$$

Sensitivity analysis measures the local variation of the function along each input dimension

$$R_i = \left(\frac{\partial f}{\partial x_i}\Big|_{\mathbf{x}=\mathbf{x}}\right)^2$$

Remarks:

- Easy to implement (we only need access to the gradient of the decision function).
- But does it really explain the prediction?

Explaining by Decomposing

Examples:

- Economic activity (e.g. petroleum, cars, medicaments, ...)
- Energy production (e.g. coal, nuclear, hydraulic, ...)
- Evidence for object in an image (e.g. pixel 1, pixel 2, pixel 3, ...)
- Evidence for meaning in a text (e.g. word 1, word 2, word 3, ...)

🗾 Fraunhofer

ICASSP 2017 Tutorial — G. Montavon, W. Samek, K.-R. Müller 22/44

What Does Sensitivity Analysis Decompose?

Sensitivity analysis

$$R_i = \left(\frac{\partial f}{\partial x_i}\Big|_{\mathbf{x}=\mathbf{x}}\right)^2$$

is a decomposition of the gradient norm $\|\nabla_{\mathbf{x}} f\|^2$.

Proof:
$$\sum_{i} R_i = \|\nabla_x f\|^2$$

Sensitivity analysis explains a *variation* of the function, not the function value itself.

What Does Sensitivity Analysis Decompose?

Example: Sensitivity for class "car"

input image

- Relevant pixels are found both on cars and on the background.
- Explains what reduces/increases the evidence for cars rather what is the evidence for cars.

Decomposing the Correct Quantity

slope decompositionvalue decomposition
$$\sum_i R_i = \|\nabla_{\mathbf{x}} f\|^2$$
 \rightarrow $\sum_i R_i = f(\mathbf{x})$

Candidate: Taylor decomposition

$$f(\mathbf{x}) = \underbrace{f(\widetilde{\mathbf{x}})}_{0} + \sum_{i=1}^{d} \underbrace{\frac{\partial f}{\partial x_{i}}}_{R_{i}} \Big|_{\mathbf{x} = \widetilde{\mathbf{x}}} (x_{i} - \widetilde{x}_{i}) + \underbrace{\mathcal{O}(\mathbf{x}\mathbf{x}^{\top})}_{0}$$

 Achievable for linear models and deep ReLU networks without biases, by choosing:

$$\widetilde{\mathbf{x}} = \lim_{\varepsilon \to 0} \varepsilon \cdot \mathbf{x} \approx \mathbf{0}.$$

25/44

Experiment on a Randomly Initialized DNN

Decomposing the Output of the DNN

Decomposing the Output of the DNN

Decomposing the Output of the DNN

- Relevance scores are sometimes negative.
- Inflexible w.r.t. the model.

29/44

Experiment on Handwritten Digits

3-layer MLP: Sensitivity analysis

Naive Taylor ($\tilde{x} = 0$)

6-layer CNN: Sensitivity analysis

Naive Taylor ($\tilde{x} = 0$)

Observation: Both analyses produce noisy explanations of the MLP and CNN predictions.

Experiment on BVLC CaffeNet

Observation: Explanations are noisy and (over/under)represent certain regions of the image.

Explaining DNN Predictions

 Standard methods (sensitivity analysis, naive Taylor decomposition) are subject to gradient noise and do not work well on deep neural networks.

DNN predictions need more advanced explanation methods.

From Shallow to Deep Explanations

Key Idea: If a decision is too complex to explain, break the decision function into sub-functions, and explain each sub-decision separately.

From Shallow to Deep Taylor Decomposition

Taylor decomposition (TD)

 $f(\boldsymbol{x}), \nabla f, \ldots$

Decomposing a Single Neuron

Equation of the ReLU neuron

$$h = \max(0, \mathbf{x}^{\top}\mathbf{w} + b)$$

Pick an appropriate root point

 $\widetilde{\mathbf{x}} \in {\{\mathbf{x} : h \approx 0 \land \text{constraints}\}}$

Perform a Taylor expansion and identify first-order terms

$$h =
abla h ig|_{\widetilde{\mathbf{x}}}^{ op} \cdot (\mathbf{x} - \widetilde{\mathbf{x}}) = \sum_{i} \underbrace{w_{i} \cdot (x_{i} - \widetilde{x}_{i})}_{R_{i}}$$

Resulting decomposition for various \widetilde{x}

$$\underbrace{\underset{i}{\mathsf{R}_{i} = \frac{x_{i}w_{i}^{+}}{\sum_{i}x_{i}w_{i}^{+}}h}_{\text{hidden layers}}, \underbrace{\mathsf{R}_{i} = \frac{x_{i} + |w_{i}|}{\sum_{i}x_{i} + |w_{i}|}h}_{\text{pixel layers}}$$

Backpropagating Decompositions

Consider an arbitrary layer of a neural network, at which the neural network output f(x) can be decomposed as:

$$f(\mathbf{x}) = \sum_j R_j$$
 with $R_j = h_j c_j$,

and $c_j > 0$ *locally constant*. Then, f(x) can also be decomposed in the previous layer:

$$f(\mathbf{x}) = \sum_i R_i$$
 with $R_i = h_i c_i$

and $c_i = \sum_j \frac{w_{ij}^+ h_j c_j}{\sum_i h_i w_{ij}^+} > 0$

also approximately locally constant.

From Decomposition to Relevance Propagation

The relevance score

can also be written as

and can be interpreted as a flow of relevance propagating backwards, where q_{ij} is the fraction of relevance at unit *j* that flows into unit *i*.

Layer-Wise Relevance Propagation (LRP)

In practice, relevance propagation does *not* need to result from a *strict* deep Taylor decomposition.

Instead, any propagation function $q_{ij} = g(h_i, w_{ij}, ...)$ with $\sum_i q_{ij} = 1$ can be used.

The propagation function can be *op-timized* for some measure of *decomposition quality*.

It enables LRP's application to *various* machine learning models (e.g. Fisher-BoW + SVMs, NNs with non-ReLU units, etc.)

Layer-Wise Relevance Propagation (LRP)

Propagation rule:

$$R_i = \sum_j q_{ij}R_j$$
 $\sum_i q_{ij} = 1$

Various rules are available for pixel layers, intermediate layers, or special layers.

Fraunhofer

Comparing Explanation Methods

Layer-wise relevance propagation denoises the explanation.

Comparison on Handwritten Digits

Data to classify:

3-layer MLP: Sensitivity analysis

Naive Taylor ($\tilde{x} = 0$)

Deep Taylor LRP

6-layer CNN: Sensitivity analysis

Naive Taylor ($\tilde{x} = 0$)

Deep Taylor LRP

Comparison on Cars Example

Observation: Only deep Taylor LRP focuses on cars.

Comparison on ImageNet Models

🜌 Fraunhofer

ICASSP 2017 Tutorial — G. Montavon, W. Samek, K.-R. Müller 43

A Useful Trick to Implement Deep Taylor LRP

Propagation rule to implement:

$$\forall_i: R_i = \sum_j \frac{h_i w_{ij}^+}{\sum_i h_i w_{ij}^+} R_j$$

Trick: Reuse forward and backward passes from an existing implementation (e.g. Theano or TensorFlow)

$$clone = layer.clone()$$

$$clone.W = max(0, layer.W)$$

$$clone.B = 0$$

$$z^{(l+1)} = clone.forward(h^{(l)})$$

$$R^{(l)} = h^{(l)} \odot clone.grad(R^{(l+1)} \oslash z^{(l+1)})$$

Can be used to easily implement deep Taylor LRP in convolution and pooling layers.

