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Why interpretability”?



Why interpretability?

1) Verify that classifier works as expected

Wrong decisions can be costly
and dangerous

“Autonomous car crashes, “Al medical diagnosis system
because it wrongly recognizes ...” misclassifies patient’s disease ...
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Why interpretability?

2) Improve classifier
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Why interpretability?

3) Learn from the learning machine

“It's not a human move. I've _
never seen a human play this Old promise: |
move.” (Fan Hui) “Learn about the human brain.”
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Why interpretability? Insights!

4) Interpretability in the sciences

Learn about the physical / biological / chemical mechanisms.
(e.g. find genes linked to cancer, identify binding sites ...)
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Why interpretability?

95) Compliance to legislation

European Union’s new General

—_— e ; ’
Data Protection Regulation right to explanation

Retain human decision in order to assign responsibility.

“With interpretability we can ensure that ML models
work in compliance to proposed legislation.”

™ o



Overview and Intuition for different
Techniques: sensitivity, deconvolution,
LRP and friends.



Understanding Deep Nets: Two Views

mechanistic functional
understanding understanding
~
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Understanding what mechanism Understanding how the network
the network uses to solve a relates the input to the output

problem or implement a function. variables.
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Approach 1: Class Prototypes

“How does a goose typically look like according to the
neural network?”

. han-goose

Class prototypes l

argmax f(x) + reg. =)
X

Image from Symonian’13



Approach 2: Individual Explanations

“Why is a given image classified as a sheep?”

. . fon-sheep

heatmap = LRP(x,f) mm)

Images from Lapuschkin’16



3. Sensitivity analysis

o evidence

1 for “car”
X2

- f(x1,..., Xd )
Xd

Sensitivity analysis: The relevance of input feature /is given by
the squared partial derivative:
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Understanding Sensitivity Analysis

Sensitivity analysis:

Observation:
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e AL highlight cars

Sensitivity analysis explains a
variation of the function, not
the function value itself.




Sensitivity Analysis Problem:
Shattered Gradients

[Montufar’14, Balduzzi'17]

Input gradient (on which sensitivity analysis is based), becomes
iIncreasingly highly varying and unreliable with neural network depth.
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Shattered Gradients i

[Montufar’14, Balduzzi'17]

Input gradient (on which sensitivity analysis is based), becomes
iIncreasingly highly varying and unreliable with neural network depth.

number of linear
regions grows
exponentially
with depth

Example in [0,1]: depth 1

2 linear
regions

4 linear
regions

8 linear
regions




LPR is not sensitive to gradient shattering

f=x ZZ o U LRP # Gradient x Input

Image Sensitivity /5 LRP




Explaining Neural Network Predictions

Layer-wise relevance Propagation (LRP, Bach et al 15) first method to explain nonlinear classifiers
- based on generic theory (related to Taylor decomposition — deep taylor decomposition M et al 16)

- applicable to any NN with monotonous activation, BoW models, Fisher Vectors, SVMs etc.

Explanation: “Which pixels contribute how much to the classification” (Bach et al 2015)
(what makes this image to be classified as a car)

f(z) = Zp hp

Sensitivity / Saliency: “Which pixels lead to increase/decrease of prediction score when changed”
(what makes this image to be classified more/less as a car) (Baehrens et al 10, Simonyan et al 14)
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Cf. Deconvolution: “Matching input pattern for the classified object in the image” (Zeiler & Fergus 2014
(relation to f(x) not specified)

Each method solves a different problem!!!



Explaining Neural Network Predictions

Classification




Explaining Neural Network Predictions

Explanation

Initialization
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Explaining Neural Network Predictions

Explanation <
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Explaining Neural Network Predictions

Explanation

large relevance

Relevance Conservation Property

Zp’r'p:...:zim:zj’rj:...:f(a:)



Historical remarks on Explaining Predictors

Gradients Sensitivity Gradient vs. Decomposition
(Baehrens et al. 2010) (Montavon et al., 2018)
Sensitivity
(Morch et al., 1995) Sensitivity

(Simonyan et al. 2014)
Gradient times input DeepLIFT Grad-CAM Integrated Gradient
(Shrikumar et al., 2016) (Shrikumar et al., 2016) (Selvaraju et al., 2016) (Sundararajan et al., 2017)

Decomposition

LRP for LSTM
LRP
(Bach et al., 2015) Probabilistic Diff (Arras etal., 2017)
’ (Zintgraf et al., 2016)
_ ntto Excitation Backprop
ew' (Zhang et al., 2016)
Deep Taylor Decomposition
(Montavon et al., 2017 (arXiv 2015))
Optimization LIME Meaningful Perturbations PatternLRP

(Ribeiro et al., 2016)  (Fong & Vedaldi 2017) (Kindermans et al., 2017)

Deconvolution

Deconvolution Guided Backprop
(Zeiler & Fergus 2014) (Springenberg et al. 2015)

Understanding the Model

Deep Visualization . e
(Yosinski et al., 2015) _ Synthesis of preferred inputs (Kim et al. 2018)
o Inverting CNNs (Nguyen et al. 2016)
Feature visualization (Dosovitskiy & Brox, 2015)
Erh t al. 2009 i i
(Erhan et a ) Inverting CNNs RNN cell state analysis Network Dissection

(Mahendran & Vedaldi, 2015)  (Karpathy et al., 2015) (hou et al. 2017)



