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18:00 - 18:50	 Case Study: Interpretable ML in Histopathology AB
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Before we start

Joint work with many people

Please ask questions at any time !

Klaus-Robert Müller (TU Berlin)

Grégoire Montavon (TU Berlin)

Sebastian Lapuschkin (Fraunhofer HHI)

Leila Arras (Fraunhofer HHI)

Frederick Klauschen (Charite)

…

http://interpretable-ml.org/miccai2018tutorial/
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Part 1: Introduction & Motivation

Tutorial on Interpretable 

Machine Learning
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Record Performances with ML
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Computing power

Deep Neural Network Information (implicit)

Solve task

Huge volumes of data

Black Box Models
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Black Box Models



MICCAI’18 Tutorial on Interpretable Machine Learning

Why interpretability ?
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Why Interpretability ?

verify
system

understand
weaknesses

legal
aspects learn new 

things from data

We need interpretability in order to:
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Why Interpretability ?

Wrong decisions can be costly 
and dangerous

1) Verify that classifier works as expected

“Autonomous car crashes, 
because it wrongly recognizes …”

“AI medical diagnosis system 
misclassifies patient’s disease …”
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2) Understand weaknesses & improve classifier

10

Why Interpretability ?

Generalization error Generalization error + human experience 
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“It's not a human move. I've 
never seen a human play this 
move.” (Fan Hui)

3) Learn new things from the learning machine

Old promise:

“Learn about the human brain.”

11

Why Interpretability ?
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4) Interpretability in the sciences

Learn about the physical / biological / chemical mechanisms. 

(e.g. find genes linked to cancer, identify binding sites …)

Why Interpretability ?
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European Union’s new General 

Data Protection Regulation
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5) Compliance to legislation

“right to explanation”

“With interpretability we can ensure that ML models 
work in compliance to proposed legislation.”

Retain human decision in order to assign responsibility.

Why Interpretability ?
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ITU/WHO Focus Group on AI4Health

Focus Group on “Artificial Intelligence for Health” established by

ITU Workshop on Artificial Intelligence for Health    
Geneva, Switzerland, 25 September 2018

https://www.itu.int/en/ITU-T/focusgroups/ai4h

More information about the group:
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Dimensions of Interpretability
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Dimensions of Interpretability
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Dimensions of Interpretability
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Part 2: Techniques of Interpretability

Tutorial on Interpretable 

Machine Learning
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Techniques of Interpretation
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Techniques of Interpretation
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Model analysis



 

MICCAI’18 Tutorial on Interpretable Machine Learning 22

Interpreting the Model
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- find prototypical example of a category 
- find pattern maximizing activity of a neuron

Interpreting the Model

goose

cheeseburger

car

Activation Maximization
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- find prototypical example of a category 
- find pattern maximizing activity of a neuron

Interpreting the Model

goose

cheeseburger

car

simple regularizer 
(Simonyan et al. 2013) 

Activation Maximization
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- find prototypical example of a category 
- find pattern maximizing activity of a neuron

Interpreting the Model

goose

cheeseburger

car

complex regularizer 
(Nguyen et al. 2016)

Activation Maximization
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Interpreting the Model

Activation Maximization
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Interpreting the Model
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Enhancing Activation Maximization
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Enhancing Activation Maximization
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Application beyond Image Domain

Question: How does a molecule with properties XYZ look like ?



 

MICCAI’18 Tutorial on Interpretable Machine Learning 29

Limitations of Global Interpretations
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Need for Individual Explanations
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Need for Individual Explanations
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Need for Individual Explanations

Population view: Which symptoms are most common for the disease

Both aspects can be important depending on who you are 

(FDA, doctor, patient).
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Making Deep Neural Nets Transparent
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Decision analysis
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Decision Analysis: Sensitivity Analysis
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Decision Analysis: Sensitivity Analysis

highlights parts, which (when changed) 
increase or decrease the prediction for “car”.
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Decision Analysis: Sensitivity Analysis

highlights parts, which (when changed) 
increase or decrease the prediction for “car”.
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Decision Analysis: Sensitivity Analysis

Shattered Gradient Problem
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Layer-wise Relevance 
Propagation (LRP)
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Black
Box

38

Decision Analysis: LRP

Layer-wise Relevance Propagation (LRP)
(Bach et al., PLOS ONE, 2015)

Explain prediction itself 

(not the change)
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Decision Analysis: LRP

Classification

cat

rooster 

dog
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Classification

cat

rooster

dog

What makes this image a “rooster image” ? 
Idea: Redistribute the evidence for class  
          rooster back to image space.

Decision Analysis: LRP
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Decision Analysis: LRP
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Theoretical interpretation 
Deep Taylor Decomposition 

(Montavon et al., 2017) 
(no gradient shattering)

Decision Analysis: LRP
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Explanation

cat

rooster 

dog

Decision Analysis: LRP
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Heatmap of prediction “3” Heatmap of prediction “9”

Decision Analysis: LRP
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More information  
(Montavon et al., 2017 & 2018)

Decision Analysis: LRP
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Other Explanation Methods
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Other Explanation Methods
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Axiomatic approach 
to interpretability
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First Attempt: Distance to Ground Truth
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Axiomatic Approach to Interpretability



 

MICCAI’18 Tutorial on Interpretable Machine Learning 49

Axiomatic Approach to Interpretability
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Axiomatic Approach to Interpretability
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Axiomatic Approach to Interpretability
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Axiomatic Approach to Interpretability
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Axiomatic Approach to Interpretability
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General Images (Bach’ 15, Lapuschkin’16)
Text Analysis (Arras’16 &17)

Speech (Becker’18)

Games (Lapuschkin’18)

EEG (Sturm’16)

fMRI (Thomas’18)

Morphing (Seibold’18)

Video (Anders’18)VQA (Arras’18)

Histopathology (Binder’18)

Faces (Lapuschkin’17)

Gait Patterns (Horst’18)

Digits (Bach’ 15)

Summary LRP
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Summary LRP

LSTM (Arras’17, Thomas’18)Convolutional NNs (Bach’15, Arras’17 …)

Bag-of-words / Fisher Vector models 
(Bach’15, Arras’16, Lapuschkin’17, Binder’18)

One-class SVM (Kauffmann’18)

Local Renormalization
Layers (Binder’16)
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Summary LRP

1. LRP solves the “correct” explanation problem
2. It has a theoretical interpretation (Deep Taylor Decomposition)
3. It can be applied to various data and models (not only deep nets)
4. It fulfills various criteria (axiomatic approach)
5. It is flexible (many explanation methods are special cases of LRP)
6. In general:
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From LRP to 
Deep Taylor Decomposition



 

MICCAI’18 Tutorial on Interpretable Machine Learning 58

Decomposing the Correct Quantity
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Why Simple Taylor doesn’t work?
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Each explanation step: 
- easy to find good root point 
- no gradient shattering

Idea: Since neural network is 
composed of simple 
functions, we propose a 
deep Taylor decomposition.

Deep Taylor Decomposition

(Montavon et al., 2017  
Montavon et al. 2018)
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Deep Taylor Decomposition
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Deep Taylor Decomposition
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Deep Taylor Decomposition
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Deep Taylor Decomposition



 

MICCAI’18 Tutorial on Interpretable Machine Learning 65

Deep Taylor Decomposition
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Deep Taylor Decomposition
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Deep Taylor Decomposition
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Deep Taylor Decomposition
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Deep Taylor Decomposition



 

MICCAI’18 Tutorial on Interpretable Machine Learning 70

Deep Taylor Decomposition
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Part 3: Applications of Interpretability

Tutorial on Interpretable 

Machine Learning
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Black
Box

73

LRP revisited



 

MICCAI’18 Tutorial on Interpretable Machine Learning

Theoretical Interpretation 
(Deep) Taylor decomposition 

Black
Box

73

LRP revisited
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General Images (Bach’ 15, Lapuschkin’16)
Text Analysis (Arras’16 &17)

Speech (Becker’18)

Games (Lapuschkin’18)

EEG (Sturm’16)

fMRI (Thomas’18)

Morphing (Seibold’18)

Video (Anders’18)VQA (Arras’18)

Histopathology (Binder’18)

Faces (Lapuschkin’17)

Gait Patterns (Horst’18)

Digits (Bach’ 15)

LRP revisited
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LRP revisited

LSTM (Arras’17, Thomas’18)Convolutional NNs (Bach’15, Arras’17 …)

Bag-of-words / Fisher Vector models 
(Bach’15, Arras’16, Lapuschkin’17, Binder’18)

One-class SVM (Kauffmann’18)

Local Renormalization
Layers (Binder’16)
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LRP & Others 
Evaluating Heatmap Quality
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Compare Explanation Methods

  Algorithm (“Pixel Flipping”)
 Sort pixels / patches by relevance

 Iterate

   destroy pixel / patch

   evaluate f(x)

 Measure decrease of f(x)

Idea: Compare selectivity (Bach’15, Samek’17):

“If input features are deemed relevant, removing them 
should reduce evidence at the output of the network.”

Important: Remove information in a non-specific manner (e.g. sample from uniform distribution)
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LRP

Compare Explanation Methods
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LRP

Compare Explanation Methods
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LRP

Compare Explanation Methods
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LRP

Compare Explanation Methods
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Sensitivity

Compare Explanation Methods
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Sensitivity

Compare Explanation Methods
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Sensitivity

Compare Explanation Methods
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Random

Compare Explanation Methods
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Compare Explanation Methods

Random
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Random

Compare Explanation Methods
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LRP:              0.722

Sensitivity:    0.691

Random:       0.523

LRP produces quantitatively better heatmaps  
than sensitivity analysis and random.

What about more complex datasets ?

397 scene categories

(108,754 images in total)

205 scene categories 

(2.5 millions of images)

1000 categories

(1.2 million training images)

SUN397 MIT PlacesILSVRC2012

Compare Explanation Methods
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Compare Explanation Methods

Sensitivity Analysis

(Simonyan et al. 2014)

Deconvolution Method 

(Zeiler & Fergus 2014)

LRP Algorithm 

(Bach et al. 2015)

(Samek et al. 2017)
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Compare Explanation Methods

(Samek et al. 2017)LRP produces better heatmaps
- Sensitivity heatmaps are noisy (gradient shuttering)

- Deconvolution and sensitivity analysis solve a different problem

- ImageNet: Caffe reference model 
- Places & SUN: Classifier from MIT
- AOPC averages over 5040 images
- perturb 9 × 9 nonoverlapping regions 
- 100 steps (15.7% of the image)
- uniform sampling in pixel space
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Compare Explanation Methods

Same idea can be applied for other 
domains (e.g. text document classification)

Text classified as “sci.med” —> LRP identifies most relevant words.

“Pixel flipping” 

= 


“Word deleting”

(Arras et al. 2017)
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Compare Explanation Methods

(Arras et al. 2016)

Deleting most relevant

from correctly classified

Deleting least relevant

from falsely classified

- word2vec / CNN model 
- Conv → ReLU → 1-Max-Pool → FC
- trained on 20Newsgroup Dataset
- accuracy: 80.19% 

LRP better than SA 

LRP distinguishes 
between positive  and 
negative evidence
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Compare Explanation Methods
Deleting most relevant

from correctly classified

Deleting least relevant

from falsely classified

- bidirectional LSTM model (Li’16)
- Stanford Sentiment Treebank dataset
- delete up to 5 words per sentence

(Arras et al. 2018)

LRP outperforms baselines (also 
recently proposed contextual 
decomposition) 

LRP ≠ Gradient x Input 

(Ding et al.
ACL, 2017)
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Compare Explanation Methods

New Keras Toolbox available for explanation methods:

https://github.com/albermax/innvestigate

Highly efficient (e.g., 0.01 sec per VGG16 explanation) !

https://github.com/albermax/innvestigate
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Application of LRP 
Compare models
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Application: Compare Classifiers

(Arras et al. 2016 & 2017)

word2vec/CNN:

Performance: 80.19%

Strategy to solve the problem: 

identify semantically meaningful 
words related to the topic.

BoW/SVM:

Performance: 80.10%

Strategy to solve the problem: 

identify statistical patterns,

i.e., use word statistics
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Application: Compare Classifiers

word2vec / CNN model BoW/SVM model

(Arras et al. 2016 & 2017)
Words with maximum relevance
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Visual Object Classes Challenge: 2005 - 2012

LRP in Practice
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(Lapuschkin et al. 2016)

Application: Compare Classifiers
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(Lapuschkin et al. 2016)same performance —> same strategy ?

Application: Compare Classifiers
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(Lapuschkin et al. 2016)same performance —> same strategy ?

Application: Compare Classifiers
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(Lapuschkin et al. 2016)same performance —> same strategy ?

Application: Compare Classifiers
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‘horse’ images in PASCAL VOC 2007

Application: Compare Classifiers
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Application: Compare Classifiers

GoogleNet:

- 22 Layers

- ILSRCV: 6.7%

- Inception layers

BVLC:

- 8 Layers

- ILSRCV: 16.4%
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GoogleNet focuses on

faces of animal.

—> suppresses background noise


BVLC CaffeNet heatmaps are much 
more noisy.

(Binder et al. 2016)

Application: Compare Classifiers

Is it related to the architecture ? 

Is it related to the performance ?

performance

heatmapstructure

?
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Application of LRP 
Quantify Context Use
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Application: Measure Context Use

classifier

how important

is context ?

how important

is context ?

relevance outside bbox

relevance inside bbox
importance 

of context =LRP decomposition allows 

meaningful pooling over bbox !
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Application: Measure Context Use

(Lapuschkin et al., 2016)

- BVLC reference model + fine tuning
- PASCAL VOC 2007
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GoogleNetBVLC CaffeNet
(Lapuschkin et al. 2016)

Application: Measure Context Use

Co
nt

ex
t u

se

- Differen models (BVLC CaffeNet, 
GoogleNet, VGG CNN S)

- ILSVCR 2012

VGG CNN S

Context use anti-correlated 
with performance.

BV
LC

 C
af

fe
Ne

t
G

oo
gl

eN
et

VG
G

 C
NN

 S
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Application of LRP 
Detect Biases & Improve Models
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(Lapuschkin et al., 2017)

108

Application: Face analysis
- Compare AdienceNet, CaffeNet, 

GoogleNet, VGG-16
- Adience dataset, 26,580 images

Age classification Gender classification

A = AdienceNet

C = CaffeNet

G = GoogleNet

V = VGG-16

[i] = in-place face alignment

[r] = rotation based alignment

[m] = mixing aligned images for training

[n] = initialization on Imagenet

[w] = initialization on IMDB-WIKI
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(Lapuschkin et al., 2017)

109

with 

pretraining

without 

pretraining

Strategy to solve the problem: Focus on chin / beard, eyes & hear, 
but without pretraining the model overfits

Gender classification

Application: Face analysis
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(Lapuschkin et al., 2017)

110

Application: Face analysis
Age classification Predictions

25-32 years old

60+ years old

Strategy to solve the problem: 
Focus on the laughing …

laughing speaks against 60+

(i.e., model learned that old 
people do not laugh)
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(Lapuschkin et al., 2017)

110

Application: Face analysis
Age classification Predictions

25-32 years old

60+ years old

pretraining on

ImageNet

pretraining on

IMDB-WIKI

Strategy to solve the problem: 
Focus on the laughing …

laughing speaks against 60+

(i.e., model learned that old 
people do not laugh)
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(Seibold et al., 2018)

111

Application: Face analysis

real

person

real

person

fake

person

Different training methods

- 1,900 images of different individuals
- pretrained VGG19 model
- different ways to train the models

50% genuine images, 

50% complete morphs

50% genuine images, 

10% complete morphs and 

4 × 10% one region morphed

50% genuine images, 

10% complete morphs, 

partial morphs with 10% 

one, two, three and four 
region morphed

partial morphs with zero, 
one, two, three or four 
morphed regions,

for two class classification 
last layer reinitialized
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Application: Face analysis

Semantic attack  
on the model

Black box adversarial  
attack on the model
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(Seibold et al., 2018)

113

Application: Face analysis
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(Seibold et al., 2018)

114

Application: Face analysis
m

ul
tic

la
ss network seems to 

compare different 
structures

network seems to 
identify “original” 
parts

m
ul

tic
la

ss

Different models 
have different 
strategies !
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Application of LRP 
Learn new Representations
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(Arras et al. 2016 & 2017)

Application: Learn new Representations

… …

document 
vector

+ +=

word2vecword2vecword2vec

relevancerelevancerelevance
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(Arras et al. 2016 & 2017)

Application: Learn new Representations

uniform TFIDF2D PCA projection of

document vectors

Document vector 
computation is unsupervised 

(given we have a classifier).
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Application of LRP 
Interpreting Scientific Data
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CNN

DNN

explain

LRP

(Sturm et al. 2016)

Brain-Computer Interfacing

Application: EEG Analysis

Neural network learns that:
Left hand movement imagination leads to 
desynchronization over right sensorimotor cortext 
(and vice versa).
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(Sturm et al. 2016)

Application: EEG Analysis

Our neural networks are interpretable:
We can see for every trial “why” it is 
classified the way it is.
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Difficulty to apply deep learning to fMRI :
- high dimensional data (100 000 voxels), but only few subjects
- results must be interpretable (key in neuroscience)

Our approach:
- Recurrent neural networks 

(CNN + LSTM) for whole-
brain analysis

- LRP allows to interpret the 
results

Application: fMRI Analysis

(Thomas et al. 2018)

Dataset:
- 100 subjects from Human Connectome Project
- N-back task (faces, places, tools and body parts)
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Application: fMRI Analysis

(Thomas et al. 2018)
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I: Record gait data

   Explain

using LRP

III:

measured gait features

gait feature relevance

Our approach:
- Classify & explain individual gait 

patterns
- Important for understanding 

diseases such as Parkinson

Application: Gait Analysis

(Horst et al. 2018)
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I: Record gait data

   Explain

using LRP

III:

measured gait features

gait feature relevance

Our approach:
- Classify & explain individual gait 

patterns
- Important for understanding 

diseases such as Parkinson

Application: Gait Analysis

(Horst et al. 2018)
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Application of LRP 
Understand Model &

Obtain new Insights
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(Lapuschkin et al. 2016)

- Fisher Vector / SVM classifier
- PASCAL VOC 2007

Application: Understand the model
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(Lapuschkin et al. 2016)

Application: Understand the model
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Motion vectors can be extracted 
from the compressed video
-> allows very efficient analysis

Application: Understand the model

(Srinivasan et al. 2017)

- Fisher Vector / SVM classifier
- Model of Kantorov & Laptev, (CVPR’14)
- Histogram Of Flow, Motion Boundary Histogram
- HMDB51 dataset
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Motion vectors can be extracted 
from the compressed video
-> allows very efficient analysis

Application: Understand the model

(Srinivasan et al. 2017)

- Fisher Vector / SVM classifier
- Model of Kantorov & Laptev, (CVPR’14)
- Histogram Of Flow, Motion Boundary Histogram
- HMDB51 dataset
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(Arras et al., 2017 & 2018)

Negative sentiment

movie review: 

++, —

128

Application: Understand the model

- bidirectional LSTM model (Li’16)
- Stanford Sentiment Treebank dataset

Model understands negation !

How to handle multiplicative interactions ?

gate neuron indirectly affect relevance 
distribution in forward pass



 

MICCAI’18 Tutorial on Interpretable Machine Learning 129

Application: Understand the model

(Anders et al., 2018)

- 3-dimensional CNN (C3D)
- trained on Sports-1M
- explain predictions for 1000 

videos from the test set
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Application: Understand the model

(Anders et al., 2018)
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Application: Understand the model

(Anders et al., 2018)
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Application: Understand the model

Observation: Explanations focus on the bordering 
of the video, as if it wants to watch more of it.
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Application: Understand the model

Idea: Play video in fast forward (without retraining) and 
then the classification accuracy improves.
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(Becker et al., 2018)
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Application: Understand the model

female speaker male speaker

model classifies gender based on the fundamental frequency and 
its immediate harmonics (see also Traunmüller & Eriksson 1995)

- AlexNet model
- trained on spectrograms
- spoken digits dataset (AudioMNIST)
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(Arras et al., 2018)
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Application: Understand the model
- reimplement model of (Santoro et al., 

2017)
- test accuracy of 91,0%
- CLEVR dataset

model understands the question and correctly identifies 
the object of interest
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Application: Understand the model

(Lapuschkin et al., in prep.)

Sensitivity Analysis LRP

does not focus on where the 
ball is, but on where the ball 
could be in the next frame 

LRP shows that that 
model tracks the ball 
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Application: Understand the model

(Lapuschkin et al., in prep.)

After 0 epochs After 25 epochs

After 195 epochs
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Application: Understand the model

(Lapuschkin et al., in prep.)



 

MICCAI’18 Tutorial on Interpretable Machine Learning 137

Application: Understand the model

(Lapuschkin et al., in prep.)
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Application: Understand the model

(Lapuschkin et al., in prep.)

model learns 

1. track the ball

2. focus on paddle

3. focus on the tunnel
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Part 4: Case Study: Interpretable ML 

in Histopathology

Tutorial on Interpretable 

Machine Learning



Heatmapping - a quick case study in
histopathology

Talk for MICCAI workshop on Interpretable ML, 2018.

Alexander Binder
Joint work with F. Klauschen, S. Lapuschkin (Bach), G.

Montavon, K.-R. Müller, W. Samek

ISTD Pillar, Singapore University of Technology and Design (SUTD)

September 15, 2018



Deep Neural networks and (near-)human performance

Lipnet beats humans
at lip reading

Human performance
in Generic

classification

human performance
in low-res (!) tra�c
sign recognition

DeepStack outplays
Humans in poker

Computer outplays
Humans in DOOM

Mimicking art styles:

https://deepart.io

Deep Learning tops

human average on a

constrained (!) reading

comprehension task

(SQuAD Dataset)

1.6%

https://deepart.io


Human-like performance 6= Human-like reasoning

Adversarial attacks against deep neural networks are easy.

3.1%



Can explanation be a useful tool beyond mere curiousity?

4.7%
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Application Idea: Finding Biases in Your Training Data

7.8%
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Can explanation be a useful tool beyond mere curiousity?

• BoW: heatmapping for cancer evidence

• BoW: heatmapping for molecular expression evidence

• Deep Learning: heatmapping for looking for biases.

9.4%



Advertisement Warning

The next slides show authors own research. Views might be
positively biased ;) . Nope I have not solved all interpretability
problems with it.

10.9%



BoW: Heatmapping for cancer evidence

12.5%



BoW: heatmapping for cancer evidence

Why do we still talk about BoW?

• Good performance for small sample sizes (samples per class
< 103).

• Stable against small changes in data augmentation / choices
of negative sampling.

• Heatmapping slower compared to DNN+GPU+innvestigate

14.1%



BoW: heatmapping for cancer evidence

Useful for ?

Shows cases where heatmapping works well

No stain normalization was used here – stability.
Towards computational fluorescence microscopy: Machine

learning-based integrated prediction of morphological and

molecular tumor profiles, Binder et al., arxiv 2018

15.6%
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BoW: heatmapping for cancer evidence

Useful for ?
Shows cases where heatmapping works well
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BoW: heatmapping for cancer evidence

Useful for ?
Shows cases where heatmapping fails

Too similar to dense clusters of TiLs
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BoW: heatmapping for cancer evidence

Useful for ?
compare to:

Too similar to dense clusters of TiLs

23.4%



BoW: heatmapping for cancer evidence

Useful for ?
Shows cases where heatmapping fails

Too similar to lymphocytes, BoW feature does not capture that
their distribution is untypical for lymphos

25%



BoW: heatmapping for cancer evidence

Useful for ?
Shows cases where heatmapping fails

Too similar to epithelial cells?? (patch-wise kernel similarity matrix
may reveal this)

26.6%



BoW: heatmapping for cancer evidence

Useful for ?

Finding subtypes that are not recognized well, for example because
undersampled in the training+testing set.

potential solutions:

• improved sampling

• feature engineering (BoW)

• data augmentation engineering (deep learning)

28.1%



BoW: heatmapping for X

Cancer is obvious. How about molecular properties?

Example: measurement of RNA in a biopsy sample. Can we
localize evidence for the expression of the corresponding protein?

Example p53, a tumor suppressor
molecule

No ad-hoc localization existent.

• forward pass: predict predict
concentration from HE stain as a

classification problem

• backward pass: find evidence
localized to pixels

29.7%



BoW: heatmapping for p53

Upper column: low expression case. Lower column: High expression case. Middle row: predicted. Right row:

Immunostained groundtruth from a neighboring slice.

Towards computational fluorescence microscopy: Machine learning-based integrated prediction of morphological

and molecular tumor profiles, Binder et al., arxiv 2018

31.3%



BoW: heatmapping for p53
Idea is not limited to heatmapping of evidence for cellular
structures.

Accuracy is high on large subsets of patients:

32.8%



BoW: heatmapping for X - How ?

Forward pass is kernel machine over BoW feature.
Backward pass to obtain scores per pixel:

• Backpropagate from output of SVM f (x) to kernel input
dimension x(d) of x

• Backpropagate from kernel input dimensions x(d) to local
features l aggregated into the BoW feature

• Backpropagate from local feature l to pixel q

34.4%



BoW: heatmapping for X - How ?

Backpropagate from output to kernel input dimension. Kernel is
given as:

f (x) =b +
X

i

a

i

y

i

k(z
i

, x) (1)

goal: f (x) ⇡
X

d

R

(3)
d

(x),where (2)

R

(3)
d

(x) is the contribution of dimension d of the test feature
x = (x(1), . . . , x(D)) to f (x).

35.9%



BoW: heatmapping for X - How ?
Backpropagate from output to kernel input dimension. Kernel is
given as:

f (x) =b +
X

i

a

i

y

i

k(z
i

, x) (3)

goal: f (x) ⇡
X

d

R

(3)
d

(x) (4)

In case of dimension-wise separable kernels, such as the HIK-kernel,

k(z , x) =
X

d

min(z(d), x(d)) (5)

k(z , x) =
X

d

k

d

(z(d), x(d)) (6)

f (x) =b +
X

i

a

i

y

i

k(z
i

, x) (7)

=b +
X

d

X

i

a

i

y

i

k

d

(z(d), x(d)) (8)

R

(3)
d

(x) =
b

D

+
X

i

a

i

y

i

k

d

(z(d), x(d)) (9)
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BoW: heatmapping for X - How ?
Backpropagate from output to kernel input dimension. Kernel is
given as:

f (x) =b +
X

i

a

i

y

i

k(z
i

, x) (10)

goal: f (x) ⇡
X

d

R

(3)
d

(x) (11)

In case of di↵erentiable kernels, such as the �2-kernel,

k(z , x) = exp(��
X

d :z(d)+x(d)>0

(z(d) � x(d))
2

z(d) + x(d)
) (12)

Taylor decomposition around a root f (x0) = 0 is a way:

f (x) ⇡0 +
X

d

(x(d) � x0,(d))
X

i

a

i

y

i

@k(z
i

, x0)

@x0,(d)
(13)
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BoW: heatmapping for X - How ?

Backpropagate from output to kernel input dimension. Kernel is
given as:

f (x) =b +
X

i

a

i

y

i

k(z
i

, x) (14)

goal: f (x) ⇡
X

d

R

(3)
d

(x) (15)

Taylor decomposition around a root f (x0) = 0 is a way:

f (x) ⇡0 +
X

d

(x(d) � x0,(d))
X

i

a

i

y

i

@k(z
i

, x0)

@x0,(d)
(16)

R

(3)
d

(x) =(x(d) � x0,(d))
X

i

a

i

y

i

@k(z
i

, x0)

@x0,(d)
(17)
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BoW: heatmapping for X - How ?

Backpropagate from kernel input dimension to local feature.

The Bow feature is a normalized sum of mappings m
d

(l) of local
features l onto visual word dimensions:

x

d

= c

X

l

m

d

(l) (18)

One example mapping is the hard assignment onto the nearest
visual word among the set of all visual words {w

d

0}:

m

d

(l) = 1[d == argmin
d

0kl � w

d

0k] (19)

Note: not di↵erentiable in l , so cannot use Taylor approximation
again.

42.2%



43.8%



BoW: heatmapping for X - How ?

Backpropagate from kernel input dimension to local feature.

The Bow feature is a normalized sum of mappings m
d

(l) of local
features l onto visual word dimensions:

x

d

= c

X

l

m

d

(l) (20)

Dont care how m

d

(l) looks like, apply special case of LRP-✏-rule.
that would look like:

R

(2)(l) =
X

d

R

(3)
d

m

d

(l)P
l

0 m
d

(l 0)
(21)

Have to take care for those dimensions d without any weights:
{d |

P
l

m

d

(l) = 0}
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BoW: heatmapping for X - How ?

Backpropagate from kernel input dimension to local feature.

The Bow feature is a normalized sum of mappings m
d

(l) of local
features l onto visual word dimensions:

x

d

= c

X

l

m

d

(l) (22)

Apply special case of LRP-✏-rule.
Have to take care for those dimensions d without any weights:
{d |

P
l

m

d

(l) = 0}:

Z (x) = {d |
X

l

m

d

(l) = 0} (23)

R

(2)(l) =
X

d 62Z(x)

R

(3)
d

m

d

(l)P
l

0 m
d

(l 0)
+

X

d2Z(x)

R

(3)
d

1P
l

0 1
(24)

46.9%



BoW: heatmapping for X - How ?

Backpropagate from local feature to pixel

Simple idea: distribute relevance R

(2)(l) of a local feature l equally
over the support pixels q, used to compute the same local feature.

LF (q) = {l | q 2 supp(l)} : local features which touch q (25)

R

(1)(q) =
X

l2LF (q)

R

(2)(l)

|supp(l)| (26)

48.4%



Deep Learning: Heatmapping for looking for
biases.

50%



Changes in the work flow due to deep learning

• Feature engineering is dead. Learn
your features from data.

• No need for tuning of features by
hand.

• Long live data augmentation
engineering

• Long live hyperparameter search
over grids of 37 di↵erent
parameters.

51.6%
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Data Augmentation Engineering

brightness

contrast

color 
distortion

This are 6 parameters here
already for hyperparameter
search here

53.1%



Data Augmentation Engineering

Many hyperparameters +

• batch size

• minibatch structure

• initial learning rate

• learning rate decay

• optimizer (SGD,
momentum, ADAM)

Hyperparameter search in
20-dim space

54.7%



Data Augmentation Engineering

How to sample elements in minibatches ?

56.3%



Histopathology in research phase: the inevitable problem
of biases

Given a prediction target - example: find evidence for cancer cells.

• If a subclass is undersampled, poor performance on it cannot
be detected, because it is not represented in the test set.

• extreme high variability of prediction target and of
background. What are relevant subclasses?

• A relevant subclass from positive or negative labeled
structures possibly undersampled, and we dont know it!

57.8%



Histopathology in research phase: the inevitable problem
of biases

• If a subclass is undersampled, poor performance on it cannot
be detected, because it is not represented in the test set.

Leads to a design problem:

• how to sample positive regions for annotation? (how much of
certain structures need to be sampled?)

• how to sample negative regions for annotation?

Hypothesis: Heatmapping over large test slides may reveal
undersampled structures in a qualitative manner and help in the
iterative solution of the design problem.

59.4%



setup:

• HE stain, breast cancer

• positive annotations: positions of cancer nuclei

• negative annotations: ???

60.9%



Batch composition

orig 1:1

1.5:1 2:1
62.5%
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Batch composition
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Batch composition

orig 1:1

1.5:1 2:1
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Batch composition

orig 1:1

1.5:1 2:1
75%



Batch composition

observation: di↵erent bias learned, inconsistent to ratio

76.6%



setup:

• HE stain, breast cancer

• positive annotations: positions of cancer nuclei

• negative annotations: (overlapping) windows without cancer
nuclei

• preprocessing: shrink image to 80%,patchsize 120, grid stride
20

• Densenet 121, batchsize 8

• LRP-✏ for FC layers, LRP-� = 0 for all others

• innvestigate toolbox with neuron selection index for cancer



Impact of Scaling

orig 80%

100% 66%
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Impact of Scaling

observation: 100% scaling: nuclei are too large for the fixed kernel
sizes, di�cult to recognize cancer, too faint heatmaps



Histopathology in application phase: heatmapping for
acceptance

A classifier that simply tells a clinician: ”its grade 3”

Problem: in case of doubt clinician cannot validate the prediction.
Classifier mistaken or clinician overlooked something?

Heatmapping allows to point the clinician to relevant regions.
Heatmapping allows to identify nonsensical predictions on outlier
samples.
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Histopathology in application phase: heatmapping for
acceptance
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Problem: in case of doubt clinician cannot validate the prediction.
Classifier mistaken or clinician overlooked something?

Heatmapping allows to point the clinician to relevant regions.
Heatmapping allows to identify nonsensical predictions on outlier
samples.



Applications III: How well does LRP scale?

DenseNet-121
Made with Keras:
https://github.com/albermax/innvestigate

https://github.com/albermax/innvestigate




Thank you!

Links (LRP for LSTM for example):
http://www.heatmapping.org/

Tutorial: http://www.heatmapping.org/tutorial/
for Keras: https://github.com/albermax/innvestigate
LRPToolbox:
https://github.com/sebastian-lapuschkin/lrp_toolbox

Experimental MXnet integration:
https://github.com/sebastian-lapuschkin/lrp_toolbox/

tree/python-wip/python

Demos: https://lrpserver.hhi.fraunhofer.de/

http://www.heatmapping.org/
http://www.heatmapping.org/tutorial/
https://github.com/albermax/innvestigate
https://github.com/sebastian-lapuschkin/lrp_toolbox
https://github.com/sebastian-lapuschkin/lrp_toolbox/tree/python-wip/python
https://github.com/sebastian-lapuschkin/lrp_toolbox/tree/python-wip/python
https://lrpserver.hhi.fraunhofer.de/
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Wrap-up

Tutorial on Interpretable 

Machine Learning
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Take Home Messages

High flexibility: Different LRP variants, free parameters
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Take Home Messages



CVPR 2018 Tutorial — W. Samek, G. Montavon & K.-R. Müller

More information

Tutorial Paper 
Montavon et al., “Methods for interpreting and understanding deep neural networks”, 
Digital Signal Processing, 73:1-5, 2018


Keras Explanation Toolbox 
https://github.com/albermax/innvestigate

https://github.com/albermax/innvestigate
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